Preview

Avtomobil'. Doroga. Infrastruktura.

Advanced search

A solution for converting gasoline engines to use an alternative fuel with a Combination Power System to reduce emissions of carbon compounds from exhaust gases

Abstract

The results of a computational study of the working process of a modern spark ignition engine when operating as part of a combined power plant (CPP) of a passenger car moving along the driving cycle are presented. Two-cylinder and four-cylinder engines with a compression ratio ε = 9.9 were considered as objects of research. The study was carried out under the condition that the excess air coefficient α = 1 was maintained for both spark ignition engines using both gasoline and ammonia. The results show that the use of CPP makes it possible to reduce engine displacement and reduce fuel consumption over the driving cycle by 18%. A decrease in the amount of heat supplied to the cycle with fuel at medium and high load modes was noted while ensuring the total specified power of the CPP required for vehicle movement. This eliminates the need to increase the fuel supply on board the vehicle when switching from gasoline to ammonia, but there is a need to select a rational combination of the required power of a spark ignition engine and an electric motor.

About the Authors

Van Dung Nguyen
MADI
Russian Federation

postgraduate



Andrey Yu. Dunin
MADI
Russian Federation

Doctor of Sciences (Technical), associate professor



Pavel V. Dushkin
MADI
Russian Federation

Candidate of Sciences (Technical), associate professor



Elmira U. Akhmetzhanova
MADI
Russian Federation

postgraduate



Andrey M. Petrov
MADI
Russian Federation

postgraduate



References

1. Aleksandrov, A. A. Alternative fuels for internal combustion engines / A. A. Aleksandrov, Arkharov Y. A. and etc.; edited by A. A. Aleksandrov, V. A. Markov. Moscow: OOO «Engineer», 2012. – 791 pp.

2. Markov, V. A. Use of vegetable oils and fuels based on them in diesel engines / V. A. Markov, С. N. Devyanin, V. G. Semenov, and etc. Moscow: «Engineer», 2011. – 536 pp.

3. Markov, V. A. Comparative assessment of alternative fuels for diesel engines/ V. A. Markov, E. V. Bebenin, E. F. Podnyakov// Alternative fuel transport. 2013. – Pub. no 5. - pp. 24–29.

4. Legasov, V. A. Hydrogen energy/ V.А. Legasov// Nature. – 1977. –no 3. – pp. 3-17.

5. Dung, N. V., Dunin A. Yu., and etc./ Simulation of the operating process of a spark ignition engine powered by carbon-free fuel// Avtomobil’. Doroga. Infrastruktura. 2023. -no 2.

6. Gridin, V. M. Calculation of parameters and characteristics of asynchronous motors [Electronic resource]: guidelines for completing homework for the course " Electrical and Electronics " / V. M. Gridin, 2011. – pp. 11-13.

7. Goldberg, O. D. Electrical machine design: Textbook for university students studying in the specialties of electrical engineering, electromechanics and energy/ О.D. Goldberg ,Ya. S. Gurin, I. S. Sviridenko; edited by. О. D. Goldberg. - 2. edition., elaberation. - Moscow : Higher. school., 2001. - 430 pp.].

8. Meulenbelt, J. Ammonia / J. Meulenbelt // Medicine. – 2012. – Vol. 40, no. 2. –P. 94–95. – DOI: 10.1016/j.mpmed, 2011.11.006.

9. Sarafraz, M. M. Sustainable three-stage chemical looping ammonia production (3CLAP) process / M. M. Sarafraz, F. C. Christo // Energy Conversion and Management. – 2021. – Vol. 229. – Art. No. 113735. – DOI: 10.1016/j.enconman.2020.113735.

10. Frigo, S. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen / S. Frigo, R. Gentili // International Journal of Hydrogen Energy. – 2013. – Vol. 38(3). – P. 1607-1615. – DOI: 10.1016/j.ijhydene.2012.10.114.

11. Bell, T. E.; Torrente-Murciano, L. H2 Production via Ammonia Decomposition Using Non-Noble Metal Catalysts: A Review / T. E. Bell, L. Torrente-Murciano // Topics in Catalysis. – 2016 – Vol. 59(15-16). – P. 1438-1457. – DOI: 10.1007/s11244-016-0653-4.

12. Ammonia for Hydrogen Storage: Challenges and Opportunities / A. Klerk, C. H. Christensen, J. K. Nørskov, T. Vegge // Journal of Materials Chemistry. – 2008. – Vol. 18(20). – P. 2304-2310. – DOI: 10.1039/B720020J.

13. Ferguson, C. R. Internal combustion engines: applied thermosciences / C. R. Ferguson. – New York: John Wiley & Sons; 2016. – 546 p.

14. Ryu, K. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation / K. Ryu, G. E. Zacharakis-Jutz, S.-C. Kong // International Journal of Hydrogen Energy. – 2014. – Vol. 39(5). – P. 2390-2398. – DOI: 10.1016/j.ijhydene.2013.11.098.

15. Ryu, K. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine / K. Ryu, G. E. Zacharakis-Jutz, S.-C. Kong // Apple Energy. – 2014. – Vol. 116. – P. 206-215. – DOI: 10.1016/j.apenergy.2013.11.067.

16. Cornelius, W. Ammonia as an engine fuel / W. Cornelius, L. W. Huellmantel, H. R. Mitchell // SAE Technical Paper. – 1965. – Art. No. 650052. – DOI: 10.4271/650052.

17. Ammonia as a Spark Ignition Engine Fuel: Theory and Application / E. S. Starkman, H. K. Newhall, R. Sutton, T. Maguire, L. Farbar // SAE Technical Paper. – 1966. – Art. No. 660155. – DOI: 10.4271/660155.

18. Comotti, M. Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines / M. Comotti, S. Frigo // International Journal of Hydrogen Energy. – 2015. – Vol. 40(33). – P. 10673-10686. – DOI: 10.1016/j.ijhydene.2015.06.080.

19. Ammonia/hydrogen mixtures in an SI-engine: Engine performance and anslysis of a proposed fuel system / C. S. Morch, A. Bjerre, M. P. Gottrup, S. C. Sorenson, J. Schramm // Fuel. – 2011. – Vol. 90(2). – P. 854-864. – DOI: 10.1016/j.fuel.2010.09.042.

20. A Hybrid Vehicle Powered by Hydrogen and Ammonia / G. Pozzana, N. Bonfanti, S. Frigo, N. Doveri et al. // SAE Technical Paper. – 2012. – Art. No. 2012-32-0085. – DOI: 10.4271/2012-32-0085.

21. M.A. Cremer, C.J. Montgomery, D.H. Wang, M.P. Heap, J. Chen /Proc. Combust. Inst., 28 (2000), P. 2427-2434.

22. L. Charles, B. Pierre, C. Francesco, M. Christine -Rousselle /Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions Fuel, 269 (2020). P. 117448.

23. M. A. Cremer, C. J. Montgomery, D. H. Wang, M. P. Heap, J. Chen /Proc. Combust. Inst., 28 (2000). P. 2427-2434.

24. Dauaud A.M., Eyzat P. Four – Octane – Number Method for Predicting the Anti Knock Behavior of fuels and Engines. SAE Transactions. 1978 780080 https://doi.org/10.4271/780080


Review

Рецензент: Л.Н. Голубков, д-р техн. наук, проф., МАДИ

Views: 119


ISSN 2409-7217 (Online)