Preview

Avtomobil'. Doroga. Infrastruktura.

Advanced search

Application of modern modeling methods to create the internal combustion engine with connecting rod absent and cylinder deactivation

Abstract

The paper analyzes and selects methods for modeling the design and workflows of a new connecting rodless internal combustion engine with a crank-rocker mechanism and cylinder deactivation. Some results obtained at this stage of the study are shown. The created simulation models made it possible to conduct preliminary studies, debug the methodology for applying the model experiment, evaluate the course of individual processes and determine the speed of the cylinder shutdown mechanism, as well as make changes to the design of some engine components. The presence of simulation models allows you to optimize the parameters of the mechanisms and engine systems at different design stages. The obtained artificial neural networks with high accuracy recognize the mode of turning off the cylinders. The chosen methodological approach makes it possible to obtain a top-level simulation model for evaluating the efficiency of the developed engine and developing a control system.

About the Authors

Arkady V. Khimchenko
Voronezh SAU
Russian Federation

Ph.D., Associate Professor



Nikolay I. Mishenko
Automobile and Road Institute "DNTU".
Russian Federation

Dr. Sc., professor



Tatyana N. Kolesnikova
Prydniprovska SACEA.
Ukraine

Ph.D., Associate Professor



References

1. Saab Reveals Unique Engine Concept That Offers High Performance and Low Fuel Consumption. 05/04/2001. availableat: http://www.saabnet.com/

2. MCE-5 VCRi: Pushing back the fuel consumption reduction limits. 2015. availableat: http://www.mce-5.com/

3. Duchemin, M., Collee V. Profile optimization of the teeth of the double rackand-pinion gear mechanism in the MCE-5 VCRi. International Gear Conference 2014: 26th 28th August 2014, Lyon. Elsevier, 2014. pp. 55–64. DOI: 10.1533/9781782421955.55

4. Mishchenko N.I., Khimchenko A.V., Yurchenko Yu.V., Suprun V.L. Kolesnikova T.N. 8-Ye Lukaninskiye chteniya. Problemy i perspektivy razvitiya avtotransportnogo kompleksa, Moscow, January 31, 2019 - Moskovskiy avtomobil'no-dorozhnyy gosudarstvennyy tekhnicheskiy universitet (MADI), 2019, pp. 410–422.

5. Duan X., Lai M.-Ch., Jansons M., Guo G., Liu J. A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel. 2021. vol. 285. P. 119142. DOI: 10.1016/j.fuel.2020.119142.

6. Bendu H., Murugan S. Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines. Renewable and Sustainable Energy Reviews. 2014. vol. 38. pp. 732-746. DOI: 10.1016/j.rser.2014.07.019.

7. Khimchenko A.V., Mishchenko N.I., Kolesnikova T.N. , Suprun V.L. , Yurchenko Yu.V. Petrol engine workflow model for researching unconventional engines. IOP Conference Series: Earth and Environmental Science. 2021. vol. 659, no. 1. pp. 012074. DOI: 10.1088/1755-1315/659/1 /012074

8. Abraham M.T., Satyam N., Pradhan B., Tian H. Debris flow simulation 2D (DFS 2D): Numerical modelling of debris flows and calibration of friction parameters. Journal of Rock Mechanics and Geotechnical Engineering. 2022. DOI: 10.1016/j.jrmge.2022.01.004.

9. Guan J., Liu J., Duan X., Jia D., Li Y., Yuan Z., Shen D. Effect of the novel continuous variable compression ratio (CVCR) configuration coupled with spark assisted induced ignition (SAII) combustion mode on the performance behavior of the spark ignition engine. Applied Thermal Engineering. 2021. vol. 197. pp. 117410. DOI: 10.1016/j.applthermaleng.2021.117410

10. Sjöberg J., Zhang Q., Ljung L., Benveniste A., Delyon B., Glorennec P.-Y., Hjalmarsson H., Juditsky A. Nonlinear black-box modeling in system identification: a unified overview. Automatica. 1995. vol. 31, no. 12. pp. 1691-1724. DOI: 10.1016/0005-1098(95)00120-8

11. Kass, R.E. Dennis J.E., Schnabel R. B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Journal of the American Statistical Association. 1985. v. 80, no 389. pp. 247. DOI: 10.2307/2288097

12. Ljung L. Modeling of dynamic systems. Englewood Cliffs, N.J : PTR Prentice Hall, 1994. ISBN 0135970970

13. Khimchenko A.V., Mishchenko N.I. 9-Ye Lukaninskiye chteniya. Problemy i perspektivy razvitiya avtotransportnogo kompleksa, Moscow, January 29, 2021. Moskovskiy avtomobil'no-dorozhnyy gosudarstvennyy tekhnicheskiy universitet (MADI). pp. 442–456.

14. Khimchenko A.V., Mishchenko N.I., Dryuchin D.A., Mamontov V.R., Savchuk O.V. Bulletin of the Automobile and Highway Institute. 2021. no. 1(36). pp. 15–26.

15. Khimchenko A.V., Mishchenko N.I. Problemy tekhnicheskoy ekspluatatsii i avtoservisa podvizhnogo sostava avtomobil'nogo transporta. Moskov, MADI, 2021. pp. 301-307.


Review

Рецензент: М.Г. Шатров, д-р техн. наук, проф., МАДИ

Views: 176


ISSN 2409-7217 (Online)